Lessons Learned from Developing
and Maintaining Shared Astronomical
Software

IBM Cards _ _
Jessica Mink

; Center for Astrophysics |
A Harvard & Smithsonian

4
7

& Lineprinter

é/ i Output

ADASS2019 1974 20 19

ADASS2019

45 Years of Using Shared Software

Master’s Thesis: Develop data reduction system and learn mapping

Financial Publishing: Using software to pinch pennies — computational
precision

Occultations: Learn solar system astrometry using JPL software and use FITS
Spacelab 2 IRT: IRAF, xterm, and sharing my own software with more FITS
Radial Velocities: Using IRAF on spectra

World Coordinate Systems:

Maintaining useful 30-year-old software.

1974 MIT MS: 1973 Mars Opposition
MIT Vidicon Spectrometer

Ay M - Slit image projections on film were turned into a
AR E ORI AT 117 projection of the slit across Mars

* Orthographic projection derived from first
principles.

* Mercator projection was computed using the only
formula | could find in the one book of map
projections in MIT’s library.

Lessons Learned

* Sharing image processing programs helps

* You can write code that works on both DEC and
IBM computers.

* Don’t believe lore about interfacing PL/l and Fortran

* Failed science can still teach useful skills.
ADASS2019

Occultation Prediction and Data Analysis

Centered on kmu 102 19B07™M05.385% —22058' 47.1"
Uranus from 1 July 1992 0:00 UT every 1 day
SAQ Catalog (SAOra)

Klemola & Mink Uranus Stars (krnu)

-

—220b L T 1

Wagnitude

sacma
B =

'L-'m;'iili""ﬂ‘-w-.k____' '+' C :

S Ebmmin
]

—gae |-

g I'-' .I
19810™ 19B05™ 198

SKYMAP output showing Uranus occulting star
ADASS2019

July B 1982 Oecullalion o
rver from IRTF Mau
—mapgnitude

;"j'.m:_J '.’_-.I 3 d

¥ =0.0017

¥FP 0019 # kgl

I 18 5254 AT P — = o :-.Cl s
Doug Mink 13:33 Mar 18 1992 G718 km

Star position

ky plane
rom 20000

Each 0:200:00

OCPRED map in Uranocentric frame

Occultation Prediction and Data Analysis

Lessons Learned

It's hard to share software when most of your publications are its results.

Results which are testable by observation make for reliable software.

Translating software across platforms makes it more robust.

Standard data formats such as FITS make data more usable across time

ADASS2019

1984: Spacelab 2 IRT

IRT in S pace Shuttle IRT Sky Cov-e:age at 2 Microns
4 N
ﬂ\'\\ e
.- ¥ rd z
g \ 1§i‘ e B
rf;_f' [___,.;-"' _‘\".E_;‘-:‘é?ﬂ/ ':l(X i F‘
J“Ihlgl"." T i f'J-.“-I NN I Sl | ¢- -
o NS !::h’*-_[; AN i
f{-"-\.@;—?‘ i x:_ *II._TI T e - -
el LA e e
: | ﬁ'@u}? e
r o [
=i ') o=
SRR RN R R R RmEL _ '@h o
—d T Y, ", .\-\'_._‘Z

— _.-f'/—‘I

Not such a great environment for an IR Telescope

ADASS2019

Add Graphics to X Window System XTERM

Do not add new functionality unless you know that a real application will require it.
It is as important to decide what a system is not as to decide what it is.
Make the system extensible so that additional needs can be met compatibly.

The only thing worse than generalizing from one example is generalizing from no
examples at all.

If a problem is not completely understood, it is probably best to provide no solution at all.

If you can get 90 percent of the desired effect for 10 percent of the work, use the simpler
solution.

Isolate complexity as much as possible.

Provide mechanism rather than policy. Place user interface policy in the clients' hands.

-Robert W. Scheifler and James Gettys: X Window System: Core and extension protocols: X version 11,
releases 6 and 6.1, Digital Press 1996, ISBN 1-55558-148-X

ADASS2019

ADASS2019

X Lessons Learned

Positive:

1. Setting development goals is good.

2. If descriptive variable names and lots of comments are used, you can read and use
other people’s code without documentation.

3. If you need software badly enough, you can build it.

4. It helps to have external tests of your code, no matter how specialized it is.

Negative:
1. Don’t buy new graphics work stations that don’t have user-level graphics yet.
2. Start writing data pipelines more than six months before a mission.

Forward:

1. C is good.
2. Sharable libraries in a standard language are useful to developers

IRAF Standards and Conventions

Clearly defined and consistently applied standards and conventions are
essential in reducing the "number of degrees of freedom" which a user

or programmer must deal with when using a large system.

The IRAF system and applications software is being built in accord with
the standards and conventions described in this document. These include
system wide standards for data structures and files, standard coding
practices, coding standards, and standards for documentation.

Wherever possible, the IRAF project has adopted or adapted existing
standards and conventions that are in widespread use in other systems.

"IRAF Standards and Conventions", August 1983, Elwood Downey,
George Jacoby, Vesa Junkkarinen, Steve Ridgway, Paul Schmidtke,
Charles Slaughter, Douglas Tody, Francisco Valdes

ADASS2019

IRAF Lessons Learned

Positive:
1. Standards are Good.
2. Inventing a new language and operating system on top of old ones works.

Negative:

1. Inventing a new language raises a huge barrier to developer participation.
2. Too many things are frozen in at the start.

3. AIPS would have worked better for us, but we weren't radio astronomers

Forward:

1. Persistent parameters are useful for users.
2. Sharable libraries in a standard language are useful to developers

ADASS2019

WCS from IRAS Image Headers

* Images from the Infrared Astronomy Satellite (IRAS) included code for map projections

* That code was added to the subroutine library | had already developed for my thesis and
occultation mapping on earth and in sky plane and used to map IRT scanned data.

Lessons Learned about WCS

* A standard library of subroutines with clear APIs helps a lot.

* Including map projection information in image headers is very useful.

ADASS2019

Spacelab 2 IRT Lessons Learned

Design pipelines while instruments are being designed, not 6 months before launch

Once you write mapping software, it can be reused for totally different projects

Its easier to read and write arbitrary formats of data with C than with Fortran

You can mix languages if subroutine arguments are clearly documented

ADASS2019

SKYMAP: _ unsuccessful attempt to share

Immge fila “i1Yhw.deadit” : HO - 100 (4)
Center at R4 05:47.57.184 Dwe —25:14:38.40
(IDSS Stars via IMSTAR {i17hdas)

Erarro] ®

—epmar i - : " . B

2000
0}
®

-aoe1n’ e ® - : , Y " -

-8 - J

F .y
T [T [BT
Yenc0
GfA SKYNAP 4.0 ryn Now 20, 1998 15:49

Space Telescope Guide Stars galactic coordinates

Negative Lessons
By 1993, ADASS seemed like a good place to show it off., but few caught on.

* Maybe Fortran was no longer as widely used as it was in the 1980’s

 The combination of C and Fortran might also have turned people off.
ADASS2019

RVSAO: Redshifts in IRAF: 1991-present

Fla:0081.NGG41 16 mets JulDate: 245636578229 2013-Mar-14 06:46:30.00 FAlo:0115.howd 108 mefte JulDate: 2456964.93392 2013-Mar-13 10:24:51 .00

Object:NGGA 116 RA:12:07:36.81 DEG: 02:41:32.30 2000.0 Olpet FCY: 22 Oijecthowd1G8 RA: 12:41:10.95 DEG: 08:11:59.09 2000.0
ssogF TT T TTTT TV T T T vaoco- 1266 s0mkrweca

Ojct BCY: 7048

“YELOGITY = 3362 +- 32 66 lnvsac O

7] Comvel = 126071 . 206 larypas = 61 41 i G vol = IRB3 - 32 05 bemic Al 106

: mmmmmmmmmmmmm Bnos E Emig vl = NDEF + INDEF knociVD Bnes
= Tomplate CZ omor Tomplate CZ emyr R
C omprp 1200710 2.0 | eom 52025 20000 1000

25000 - o wplarp 1304163 AEK 2323

i | ame g1o00 seaee 1ane =
| _ll Mme 4073 3461 1600 Ite

E7Mg 30806 33007 1666

o e Dwarf

EXfy 36211 43700 1122

Emission
Line
Galaxy

Fils 60430 G6LOOD 1014
Filg 6P @117 721

| ram mop waut goe

- FEls 20131 B.B0 426
- Fols 23300 2477 324
2Ny -2R670 ENE0 26D

7| i w220 06 4t 168 223

Kdflg 201,107 44.008 223
| Gone o600 166600 203

oL A K, R R o, M T 0 i ¢ i 0N 64807 181702 200
4000 5000 6000 7000 3750 4000 4250 4500 4750 S000 5250 5500, ariceion wesfouni2

Sometimes, IRAF is very useful

A maintained software system which runs almost everywhere makes sharing easier
If you use a package every day, most of the bugs get shaken out

If other people use it, too, bugs get found faster

ADASS2019

ADASS2019

RVSAO: Lessons Learned

Positive

Sometimes, IRAF is very useful

A maintained, ubiquitous software system makes sharing easier
If you use a package every day, most of the bugs get shaken out
If other people use it, too, bugs get found faster

Negative
Few others understand SPP, so the developer has to fix all of the bugs
After 20 years the system is no longer as ubiquitous

Forward
Write packages in a long-lived, system-independent language
Make package as self-contained, but universal, as possible

WCSTools: World Coordmates smce 1994

Flle wpix,fits

Color][Cursor
linear 30 wrap J[log)

It all started Wlth the NRAO release of open source map projections at ADASS in 1994
| was maintaining SAOimage, and coordinate tracking seemed like a Good Thing
Optical images didn’t have good WCS mapping, but Elwood Downey wrote one

| translated my catalog and FITS handling software into C, and WCSTools was born

ADASS2019

WCSTools: Lessons Learned

Positive

Performing services which everyone needs, but few really understand sells.

A single-language, open-source software package sells.

Good web documentation with examples means fewer requests fall on the developer.
Policy/GUl-independence helps.

Top-level subroutines with simple API’s also sell.

Negative
Needs change over time.
Commonly-used processing structures raise the barrier to using external programs

Forward
Developers don’t last forever, so make it easy to turn over responsibility
It helps if package developers have a long-term position and never retire.

ADASS2019

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

