
1 The Baseline Vector

The baseline vector ~b is defined as the vector from telescope B to telescope A
measured in centimeters. Establish a coordinate system with its origin at the
corner of the array such that the z axis runs parallel to the long arm through
telescope A, the y axis runs parallel to the short arm through telescope B, and
the x axis is perpendicular to both, pointing roughly up. In this coordinate
system, the z component of the baseline vector is the distance in centimeters
from the corner of the array to telescope A, the y component is the distance
from the corner to telescope B, and the x component is zero.

Station locations are multiples of 197 inches (500.38 cm) for 5, 10, 15, 20,
25, and 30 meter locations, or 277 inches (703.58 cm) for 7, 14, 21, 28, 35 meter
locations. With this information an approximate value for the baseline vector
in the (x, y, z) coordinate system is easily computed. The task is now to convert
the baseline to the “topocentric” coordinate system with axes corresponding to
up, east, and north.

The long arm of the array points to an azimuth of θ = 41◦.02919, and the
short arm is assumed to perpendicular to it pointing roughly southeast. The
slope from the short arm 15 meter station to the long arm 15 meter station was
measured to be φ′ = −0◦.01155, sloping downward to the north.

First, convert the measured downward slope from the short arm 15 meter
station to the long arm 15 meter station into a rotation around the y axis
defined above. If we assume that the measured downward slope is the maximum
downward slope in any direction from the short arm 15 meter station, then the
cosine formula from spherical trigonometry gives the desired relation

cosφ = sin2 φ′ + cos2 φ′ cos θ (1)

which gives φ = −0◦.00871.
Now we can convert the baseline from the (x, y, z) coordinates to topocentric

coordinates by first rotating around y by φ and then around z by θ bU
bE
bN

 =

 cos θ cosφ − sinφ cos θ sinφ
sin θ cosφ cos θ sin θ sinφ
− sinφ 0 cosφ

 ·
 bx
by
bz

 (2)

or  bU
bE
bN

 =

 0.75438 0.00015 −0.00011
0.65644 0.75438 −0.00010
0.00015 0.00000 1.00000

 ·
 bx
by
bz

 (3)

1.1 Optical Path Differences

Optical Path Difference OPD is defined to be the distance travelled by the
light from the star through telescope B to the beamsplitter minus the distance
travelled from the star through telescope A to the beamsplitter. The External
Optical Path Difference OPDEXT is the distance travelled from the star to
telescope B minus the distance travelled from the star to telescope A. Since
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the baseline vector ~b is defined as going from telescope B to telescope A, the
inner product of the baseline vector and a unit vector pointing to the star ŝ is
the External Optical Path Difference

OPDEXT = ~b · ŝ (4)

The Internal Optical Path Difference OPDINT is the distance travelled from
telescope B to the beamsplitter minus the distance travelled from telescope A
to the beamsplitter. The delay line positions are defined such that increasing
the delay line positions always increases the distance from the corresponding
telescope to the beamsplitter. Therefore, if the delay lines are in the beam from
telescope A, then increasing the delay line positions decreases OPDINT; whereas
if the delay lines are in the beam from telescope B, then increasing the delay
line positions increases OPDINT. With both delay lines at their home positions,
a star at zenith does not balance the interferometer due to a constant term in
OPDINT designated OPDINT0:

OPDINT = OPDINT0 ∓ 2× (SD + LD) (5)

where SD and LD are the short and long delay line positions, respectively, and
the upper sign applies when the beam from telescope A runs through the delay
lines and the lower sign applies when the beam from telescope B runs through
the delay lines. The factor of two arises since the beam traverses each delay line
twice.

The value of OPDINT0 depends on the locations of the two telescopes and on
which telescope beam is run over the delay lines. Numerical values for OPDINT0

are estimated as

OPDINT0 = −104.6 cm + by − bz (A delayed)
OPDINT0 = 206.4 cm + by − bz (B delayed)

From the definitions of OPD, OPDEXT, and OPDINT, it is clear that

OPD = OPDINT + OPDEXT (6)

The condition for balancing the interferometer is that

OPD = 0 (7)

or
−~b · ŝ = OPDINT0 ∓ 2× (SD + LD) (8)

thus
SD + LD = ±1

2
(~b · ŝ + OPDINT0) (9)

where once again the upper sign applies when the beam from telescope A runs
through the delay lines, and the lower sign applies when the beam from telescope
B runs through the delay lines.
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1.2 Fitting the Baseline

The formulae given above for the baseline vector are very approximate, and in
practice it is necessary to fit a baseline vector to a set of observations. The
quantities which can be observed in order to fit the baseline are the positions
of the short and long delay lines which balance the interferometer for a given
star. If we designate the sum of the long and short delay line positions d, then
the last formula in the previous section gives

d = ±1
2
[
sU sE sN 1

] 
bU
bE
bN

OPDINT0

 (10)

where sU , sE , and sN are the components of the unit topocentric vector ŝ
pointing to the star, and bU , bE , and bN are the components of the baseline
vector ~b. If n observations of d are made, then the above equation can be
augmented to read

d1

d2

d3

...
dn

 = ±1
2


s1U s1E s1N 1
s2U s2E s2N 1
s3U s3E s3N 1

...
...

...
...

snU snE snN 1




bU
bE
bN

OPDINT0

 (11)

In general the above equation is only approximately true due to errors in the
measurement of the delays di. Nonetheless, good estimates for the baseline
parameters bU , bE , bN , and OPDINT0 can be obtained by minimizing the sum
of the squared errors, where the error is defined as the difference between the
measured delay di on the left hand side of the equation above, and the predicted
value ± 1

2 (̂si ·~b + OPDINT0) on the right hand side. For notational convenience,
let

d =


d1

d2

d3

...
dn

 ,S = ±1
2


s1U s1E s1N 1
s2U s2E s2N 1
s3U s3E s3N 1

...
...

...
...

snU snE snN 1

 , and b =


bU
bE
bN

OPDINT0

 (12)

and thus the quantity to be minimized is

|d− S · b|2 (13)

Our task is thus to choose a vector b such that the vector S · b, which lies in
the range of S, is as close as possible to the vector d, which in general does not
lie in the range of S. A necessary and sufficient condition for this to be true is
that the error vector d− S · b be perpendicular to the range of S, i.e.

ST · (d− S · b) = 0 (14)
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or
STS · b = ST · d. (15)

This equation can be solved formally for the baseline parameters b

b = (STS)−1ST · d. (16)

Note that if at least four observations are made, then STS is a 4 × 4 symmet-
ric, positive definite matrix whose inverse can be found efficiently by Cholesky
decomposition.
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